Contingent Kernel Density Estimation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Contingent Kernel Density Estimation

Kernel density estimation is a widely used method for estimating a distribution based on a sample of points drawn from that distribution. Generally, in practice some form of error contaminates the sample of observed points. Such error can be the result of imprecise measurements or observation bias. Often this error is negligible and may be disregarded in analysis. In cases where the error is no...

متن کامل

Kernel Density Estimation

Preface The following diploma thesis is thought to be a diploma thesis in applied statistics. I declare this in the first paragraph of my work, because you can treat this subject either from a theoretic or an applied view, although the borders between these two areas of statistics cannot be drawn exactly. The reason why I got the idea to treat this subject, is that on the one hand density estim...

متن کامل

Filtered Kernel Density Estimation

A modification of the kernel estimator for density estimation is proposed which allows the incorporation of local information about the smoothness of the density. The estimator uses a small set of bandwidths rather than a single global one as in the standard kernel estimator. It uses a set of filtering functions which determine the extent of influence of the individual bandwidths. Various versi...

متن کامل

Adaptive kernel density estimation

This insert describes the module akdensity. akdensity extends the official kdensity that estimates density functions by the kernel method. The extensions are of two types: akdensity allows the use of an “adaptive kernel” approach with varying, rather than fixed, bandwidths; and akdensity estimates pointwise variability bands around the estimated density functions.

متن کامل

Iterated Transformation-Kernel Density Estimation

Transformation from a parametric family can improve the performance of kernel density estimation. In this paper, we give two data-driven estimators for the optimal transformation parameter. We demonstrate that multiple families of transformations can be employed at the same time, and there can be beneets to iterating this process. The transformation scheme can be expected to rst pick the right ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: PLoS ONE

سال: 2012

ISSN: 1932-6203

DOI: 10.1371/journal.pone.0030549